ANTI-DERIVATIVES

Ref: Complex Variables by James Ward Brown and Ruel V. Churchil

Dr. A. Lourdusamy M.Sc., M.Phil., B.Ed., Ph.D. Associate Professor Department of Mathematics St.Xavier's College(Autonomous) Palayamkottai-627002.

42. ANTI-DERIVATIVES

Formula

1) Continuity

2)
$$F'(z) = \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z}$$

Definition

The anti-derivative of a continuous function f in a domain D, is a function F such that $F'(z) = f(z) \forall z \text{ in D}$.

Remarks

- 1) The anti-derivative is an analytic function.
- 2) The anti-derivative of a given function f is unique.

Theorem

Suppose that a function f(z) is continuous on a domain D. If any one of the following statements is true, then so are the others:

- i) f(x) has an anti-derivative F(z) in D.
- ii) The integrals of f(z) along contours lying entirely in D and extending from any fixed point z_1 to any fixed point z_2 all have the same value. i.e., the integration is independent of the path in D.
- iii) The integrals of f(z) around closed contours lying entirely in D all have values zero.

Proof

To prove (i) \Rightarrow (ii)

Assume f(z) has an anti-derivative F(z) in D.

$$\Rightarrow$$
 F'(z) = f(z)

To Prove

The integrals of f(z) along contours in D all have the same value.

If a contour C from z_1 to z_2 is z = z(t) ($a \le t \le b$) then

$$\frac{d}{dt}F(z(t)) = F'[z(t)]z'(t)$$
$$= f[z(t)]z'(t)$$

Now,
$$\int_{C} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt$$

$$= \int_{a}^{b} \frac{d}{dt} (F[z(t)]) dt$$

$$a$$

$$\therefore \int_{C} f(z) dz = [F[z(t)] dt]_{a}^{b}$$

$$C$$

$$= F[z(b)] - F[z(a)]$$

 $= F(z_2) - F(z_1)$

.. The integrals of f(z) along contours in D all have the same value and this is also valid when C is any contour, not necessarily a smooth one, that lies in D.

For, if C consists of finite number of smooth arcs C_k (k = 1, 2, ..., n),

each
$$C_k$$
 extending from z_k to z_{k+1} then
$$\int_C f(z) dz = \sum_{k=1}^n \int_{C_k} f(z) dz$$

$$= \sum_{k=1}^{n} [F(z_{k+1}) - F(z_k)]$$

$$= F(z_{n+1}) - F(z_1)$$

$$\therefore (i) \Rightarrow (ii)$$

$$(ii) \Rightarrow (iii)$$

Assume that the integrals of f(z) along contours in D all have the same value.

To prove

The integrals of f(z) around closed contours in D have value 0.

We let z_1 and z_2 denote any two points on a closed contour C lying in D and form paths with initial point z_1 and final point z_2 such that $C = C_1 - C_2$.

By assumption

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$$

$$C_1 \qquad C_2$$
Now,
$$\int_{C} f(z) dz = \int_{C_1 - C_2} f(z) dz$$

$$= \int_{C_1} f(z) dz - \int_{C_2} f(z) dz$$

$$C_1 \qquad C_2$$

 \therefore The integral of f(z) along any closed contour C is 0.

Now to prove (iii) \Rightarrow (ii)

i.e., To prove (iii) \Rightarrow (ii) \Rightarrow (i)

Let the integral of f(z) along any closed contour C be 0.

Let C_1 and C_2 be any two contours lying in D from a point z_1 to z_1 and

we also have
$$\int f(z) dz = 0.$$

$$C_1 - C_2$$

$$\Rightarrow \int f(z) dz - \int f(z) dz = 0$$

$$C_1 - C_2$$

$$\Rightarrow \int_{C_1} f(z) dz = \int_{C_2} f(z) dz$$

Define
$$F(z) = \int_{z_0}^{z} f(s) ds$$
 on D

We have to show that F'(z) = f(z).

Let $(z + \Delta z)$ be any point, distinct from z, lying in some neighborhood of z that is small enough to be contained in D.

Now,
$$F(z + \Delta z) - F(z) = \int_{z_0}^{z_0} f(s) ds - \int_{z_0}^{z_0} f(s) ds$$

$$= \int_{z_0}^{z_0} f(s) ds$$

where the path of integration from z to $z + \Delta z$ may be selected as a line segment.

Now,
$$\int_{z}^{z+\Delta z} ds = \Delta z$$

$$\Rightarrow \int_{z}^{z+\Delta z} f(z) ds = f(z) \Delta z$$

$$\Rightarrow \frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) ds = f(z)$$
Now,
$$\frac{F(z+\Delta z) - F(z)}{\Delta z} - f(z) = \frac{1}{\Delta z} \int_{z}^{z+\Delta z} [f(s) - f(z)] ds$$

Given: f is continuous at z.

 \Rightarrow given $\in > 0$, there exists $\delta > 0$ such that $|f(s) - f(z)| < \epsilon$ whenever $|s - z| < \delta$.

Now, $z + \Delta z$ is close to $z \Rightarrow |\Delta z| < \delta$.

$$\therefore \left| \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right| = \frac{1}{\Delta z} \left| \int_{z}^{z + \Delta z} [f(s) - f(z)] ds \right| < \frac{1}{\Delta z} \left| \int_{z}^{z + \Delta z} \varepsilon ds \right|$$

$$= \frac{1}{|\Delta z|} \varepsilon |\Delta z| = \varepsilon$$

$$\therefore \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = f(z)$$

$$\Rightarrow$$
 $F'(z) = f(z)$

 \Rightarrow The anti-derivative of f(z) if F(z).