ANTI-DERIVATIVES

Ref: Complex Variables by James Ward Brown and Ruel V. Churchil

Dr. A. Lourdusamy M.Sc.,M.Phil.,B.Ed.,Ph.D.
Associate Professor
Department of Mathematics
St.Xavier's College(Autonomous)
Palayamkottai-627002.

42. ANTI-DERIVATIVES

Formula

1) Continuity
2) $F^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}$

Definition

The anti-derivative of a continuous function f in a domain D , is a function F such that $F^{\prime}(z)=f(z) \forall z$ in D.

Remarks

1) The anti-derivative is an analytic function.
2) The anti-derivative of a given function f is unique.

Theorem

Suppose that a function $f(z)$ is continuous on a domain D. If any one of the following statements is true, then so are the others:
i) $\quad f(x)$ has an anti-derivative $F(z)$ in D.
ii) The integrals of $\mathrm{f}(\mathrm{z})$ along contours lying entirely in D and extending from any fixed point z_{1} to any fixed point z_{2} all have the same value.
i.e., the integration is independent of the path in D.
iii) The integrals of $f(z)$ around closed contours lying entirely in D all have values zero.

Proof

To prove (i) \Rightarrow (ii)
Assume $\mathrm{f}(\mathrm{z})$ has an anti-derivative $\mathrm{F}(\mathrm{z})$ in D .
$\Rightarrow \mathrm{F}^{\prime}(\mathrm{z})=\mathrm{f}(\mathrm{z})$

To Prove

The integrals of $f(z)$ along contours in D all have the same value.
If a contour C from z_{1} to z_{2} is $\mathrm{z}=\mathrm{z}(\mathrm{t})(\mathrm{a} \leq \mathrm{t} \leq \mathrm{b})$ then

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~F}(\mathrm{z}(\mathrm{t})) & =\mathrm{F}^{\prime}[\mathrm{z}(\mathrm{t})] \mathrm{z}^{\prime}(\mathrm{t}) \\
& =\mathrm{f}[\mathrm{z}(\mathrm{t})] \mathrm{z}^{\prime}(\mathrm{t})
\end{aligned}
$$

$$
\text { Now, } \begin{aligned}
& \int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \\
&=\int_{a}^{b} \frac{d}{d t}(F[z(t)]) d t \\
& \begin{aligned}
\therefore \int_{C} f(z) d z & =[F[z(t)] d t]_{a}^{b} \\
& =\mathrm{F}[z(\mathrm{~b})]-\mathrm{F}[z(\mathrm{a})] \\
& =\mathrm{F}\left(\mathrm{z}_{2}\right)-\mathrm{F}\left(\mathrm{z}_{1}\right)
\end{aligned}
\end{aligned}
$$

\therefore The integrals of $\mathrm{f}(\mathrm{z})$ along contours in D all have the same value and this is also valid when C is any contour, not necessarily a smooth one, that lies in D.

For, if C consists of finite number of smooth arcs $\mathrm{C}_{\mathrm{k}}(\mathrm{k}=1,2, \ldots, \mathrm{n})$,
each C_{k} extending from z_{k} to $\mathrm{z}_{\mathrm{k}+1}$ then $\int_{C} f(z) d z=\sum_{k=1}^{n} \int_{C_{k}} f(z) d z$

$$
\begin{aligned}
& =\sum_{k=1}^{n}\left[F\left(z_{k+1}\right)-F\left(z_{k}\right)\right] \\
& \quad=\mathrm{F}\left(\mathrm{z}_{\mathrm{n}+1}\right)-\mathrm{F}\left(\mathrm{z}_{1}\right) \\
& \therefore(\mathrm{i}) \Rightarrow \text { (ii) }
\end{aligned}
$$

(ii) \Rightarrow (iii)

Assume that the integrals of $f(z)$ along contours in D all have the same value.

To prove

The integrals of $\mathrm{f}(\mathrm{z})$ around closed contours in D have value 0 .
We let z_{1} and z_{2} denote any two points on a closed contour C lying in D and form paths with initial point z_{1} and final point z_{2} such that $C=C_{1}-C_{2}$.

FIGURE 48

By assumption

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Now, $\int f(z) d z=\int f(z) d z$ $C \quad C_{1}-C_{2}$

$$
=\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z
$$

\therefore The integral of $\mathrm{f}(\mathrm{z})$ along any closed contour C is 0 .

Now to prove (iii) \Rightarrow (ii)
i.e., To prove (iii) \Rightarrow (ii) \Rightarrow (i)

Let the integral of $\mathrm{f}(\mathrm{z})$ along any closed contour C be 0 .
Let C_{1} and C_{2} be any two contours lying in D from a point z_{1} to z_{1} and
we also have $\quad \int f(z) d z=0$.
$C_{1}-C_{2}$

$$
\Rightarrow \int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z=0
$$

$$
\Rightarrow \int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Define $F(z)=\int_{z 0}^{z} f(s) d s$ on D
We have to show that $\mathrm{F}^{\prime}(\mathrm{z})=\mathrm{f}(\mathrm{z})$.
Let $(\mathrm{z}+\Delta \mathrm{z})$ be any point, distinct from z , lying in some neighborhood of z that is small enough to be contained in D.

where the path of integration from z to $z+\Delta z$ may be selected as a line segment.

$$
\text { Now, } \begin{aligned}
& \int_{z}^{z+\Delta z} d s=\Delta z \\
\Rightarrow & \int_{z}^{z+\Delta z} f(z) d s=f(z) \Delta z \\
\Rightarrow & \frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) d s=f(z) \\
& \text { Now, } \frac{\mathrm{F}(\mathrm{z}+\Delta \mathrm{z})-\mathrm{F}(\mathrm{z})}{\Delta \mathrm{z}}-\mathrm{f}(\mathrm{z})=\frac{1}{\Delta z} \int_{z}^{[}[f(s)-f(z)] d s
\end{aligned}
$$

Given: f is continuous at z .
\Rightarrow given $\in>0$, there exists $\delta>0$ such that $|\mathrm{f}(\mathrm{s})-\mathrm{f}(\mathrm{z})|<\varepsilon$ whenever $|s-z|<\delta$.

Now, $\mathrm{z}+\Delta \mathrm{z}$ is close to $\mathrm{z} \Rightarrow|\Delta \mathrm{z}|<\delta$.

$$
\begin{aligned}
& \left.\therefore\left|\frac{\mathrm{F}(\mathrm{z}+\Delta \mathrm{z})-\mathrm{F}(\mathrm{z})}{\Delta \mathrm{z}}-\mathrm{f}(\mathrm{z})\right|=\left.\frac{1}{\Delta \mathrm{z}}\right|_{\mathrm{z}} ^{\mathrm{z}+\Delta \mathrm{z}}[\mathrm{f}(\mathrm{~s})-\mathrm{f}(\mathrm{z})] \mathrm{ds}\left|<\frac{1}{\Delta \mathrm{z}}\right|_{\mathrm{z}}^{\mathrm{z}+\Delta \mathrm{z}} \varepsilon \mathrm{ds} \right\rvert\, \\
& \\
& =\frac{1}{|\Delta \mathrm{z}|} \varepsilon|\Delta \mathrm{z}|=\varepsilon \\
& \therefore \lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z) \\
& \Rightarrow \mathrm{F}^{\prime}(\mathrm{z})=\mathrm{f}(\mathrm{z}) \\
& \Rightarrow \text { The anti-derivative of } \mathrm{f}(\mathrm{z}) \text { if } \mathrm{F}(\mathrm{z})
\end{aligned}
$$

